Nuprl Lemma : rel_plus_implies
0,22
postcript
pdf
T
:Type,
R
:(
T
T
Prop),
x
,
y
:
T
. (
x
R
^+
y
)
(
x
R
y
)
(
z
:
T
. (
x
R
^+
z
) & (
z
R
y
))
latex
Definitions
A
&
B
,
Unit
,
P
Q
,
,
b
,
b
,
i
=
j
,
,
Dec(
P
)
,
SQType(
T
)
,
{
T
}
,
P
Q
,
x
:
A
.
B
(
x
)
,
P
&
Q
,
R
^+
,
x
f
y
,
rel_exp(
T
;
R
;
n
)
,
,
A
,
False
,
A
B
,
x
:
A
.
B
(
x
)
,
P
Q
,
t
T
,
Prop
Lemmas
le
wf
,
rel
exp
wf
,
decidable
int
equal
,
nat
plus
properties
,
rel
plus
wf
,
assert
wf
,
not
wf
,
bnot
wf
,
bool
wf
,
eq
int
wf
,
assert
of
eq
int
,
not
functionality
wrt
iff
,
assert
of
bnot
,
iff
transitivity
,
eqff
to
assert
,
eqtt
to
assert
,
nat
plus
inc
origin